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The equation that is central to this study and which will
be discretized spectrally describes the horizontal advectionIn the accompanying paper (Part I; W. T. M. Verkley, 1997, J.

Comput. Phys. 100–114 136) a spectral numerical scheme is devel- of the absolute vorticity q by a nondivergent velocity field
oped for two-dimensional incompressible fluid flow in a circular v 5 k 3 =c, where k is a vertically pointing unit vector
basin. The model is formulated in terms of basis functions that are and c is a streamfunction. The streamfunction is assumed
products of Jacobi polynomials and complex exponentials. The

to be zero at the circular boundary, implying no-normalJacobi polynomials are used for the radial dependence of the fields
flow at the boundary. The equation reads:and the complex exponentials for the angular dependence. The

basis functions are orthogonal with respect to the natural inner
product for a circular domain. The nonlinear advection term is calcu- ­q

­t
1 J(c, q) 1 tf 1 kz 5 0, (1)

lated without aliasing using the transform method, based on a grid
of which the radii are Gaussian and the angles are equidistant. In
the present paper we discuss the performance of the model by where the absolute vorticity q is given by z 1 f, with the
showing examples of time integrations. The differences between relative vorticity z being k ? = 3 v 5 =2c and f being the
these examples concern the spatial structure of the planetary vortic- planetary vorticity. The operators =2 and J are the Laplace
ity (c-plane, b-plane, f-plane), the temporal and spatial resolution

and Jacobi operators, respectively, the expressions ofof the model, and the form, strength, and type of the forcing and
which are given in Subsection 2.2 of Part I. The system isdissipation. Q 1997 Academic Press

forced by a source of vorticity 2tf and damped by Ekman
friction 2kz. Here f is the spatial structure of the forcing
(taken to be constant in space and time) and t and k1. INTRODUCTION
measure the strength of the forcing and the friction. Be-

In the paper accompanying the present one, which will sides Ekman friction, in some cases a viscosity term n=2z
be referred to as Part I [17], a spectral model is developed is used on the right-hand side of (1). In the latter case
for the numerical simulation of two-dimensional and in- we impose as an extra boundary condition that the radial
compressible fluid flow in a circular basin. Such a model derivative of c is equal to the velocity ub of the boundary,
is believed to be a useful tool in the study of systems which implying no-slip at the boundary.
are two-dimensional to an appropriate first approximation. The functions that are used to discretize the spatial struc-
Examples of such systems are plasmas in a magnetic field ture of the fields are denoted by Ymn(r, u), where m is an
and large-scale atmospheric and oceanic flows [5, 10]. In- integer that runs from 2y to y and n is an integer assuming
deed, numerical experimentation is a powerful way of ob- the values umu, umu 1 2, umu 1 4, etc., and where the argu-
taining insight into the behavior of such systems. The evo- ments r and u are polar coordinates. These polar coordi-
lution of the flow can be studied in as much detail as one nates are used alongside the Cartesian coordinates x and
likes. Furthermore, numerical simulations can be used to y, to which they are related by x 5 r cos u and y 5 r sin
test, e.g., modern statistical mechanical approaches to the u. The flow domain is a circle with radius 1, lengths being
long-time behavior of these systems. The present paper is expressed in units of the actual radius R, and is sketched
concerned with checking the proposed model against re- in Fig. 1 of Part I. The basis functions are defined by
sults from other sources in the form of specific examples

Ymn(r, u) ; Wmn(r)eimu, (2)of time integrations. In the following we give a summary
of the model as developed in Part I. An overview of the where
examples that will be discussed is given in the last para-

Wmn(r) ; r umuP(0,umu)
k (s), (3)graph of this Introduction.
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and P(a,b)
k (s) is a Jacobi polynomial with argument s 5 For fields in the space UN the summation over n extends

to N 1 2 instead of N. In Subsection 2.2 of Part I expres-2r2 2 1 and degree 2k with k 5 (n 2 umu)/2. (see Abramo-
witz and Stegun [1, Chap. 22]). The functions Ymn can be sions are given for the Laplacian and its inverse in terms

of the basis functions Ymn. It is also shown there how theconveniently represented by means of a diagram like Fig.
2 in Part I. Each dot in this figure signifies a particular spectral coefficients Jmn of the Jacobian of a streamfunction

and a vorticity field, truncated to the space TN, can bebasis function. A few examples of the functions Wmn in
the definition of Ymn are given in Table I of Part I. The calculated without aliasing. The spectral model is then

formulated asbasis functions are orthogonal with respect to the natural
inner product (see (6) of Part I) for a circular domain. It
is instructive to note that the basis functions Ymn span the ­q̂

­t
1 PN J(c̃, q̂) 1 tf̂ 1 kẑ 5 0, (8)same linear function space as the functions Xmn, which are

defined by

where PN is defined to be the operator that projects on
Xmn(r, u) ; Vmn(r)eimu, (4) the space TN. Written out in terms of coefficients this

equation reads
where

dqmn

dt
1 Jmn 1 tfmn 1 kzmn 5 0, (9)Vmn(r) ; r umur2k 5 rn. (5)

We see that the r dependence of both Ymn and Xmn is a
where the coefficients of qmn and zmn are related by qmn 5polynomial of degree n. The functions can be transformed
zmn 1 fmn and those of zmn and cmn by Eq. (17) of Part I.into each other by the formulas given in Appendix A of
Expressions of the coefficients Jmn are given in (20) of PartPart I. In addition, it can be verified that the functions Xmn I. A fourth-order Runge–Kutta scheme, also discussed inspan the same space as the functions 1, x, y, x2, xy, y2, x3,
Part I, is used to step the system forward in time.x2y, xy2, y3, etc. The fact that the functions Ymn and Xmn Important global quantities of the system are the abso-span the same function space as products of polynomials of
lute enstrophy, circulation, angular momentum, and en-x and y explains that n increases in steps of 2. Furthermore,
ergy. Using that v 5 k 3 =c and employing partial integra-because polynomials in x and y form a complete set in
tion in the integration over r, these quantities can beterms of which any square integrable function of x and y on
written in terms of the inner product (6) of Part Ia bounded domain can be represented, the sets of functions

Xmn and Ymn are complete too.
In the spectral model, fields with the dimension of vortic- QN 5

f
2

kq̂, q̂l, (10)
ity—like q and z—are assumed to be elements of the space
TN. By this we mean that these fields, collectively denoted

CN 5 f k1, ẑ l, (11)
by h and distinguished from the original untruncated fields
by a hat, are written as AN 5 22f kc̃, 1l, (12)

EN 5 2
f
2

kc̃, ẑ l. (13)
ĥ 5 ON

m52N
ON

n5umu
hmnYmn, (6)

In the inviscid case, i.e., the case without forcing and fric-
where it is understood that the summation over n goes in tion, the equations without space and time discretizations
steps of 2. In Part I it is shown that fields with the dimension conserve absolute enstrophy, circulation as well as energy,
of the streamfunction—like c—which are obtained by and, if the planetary vorticity is circularly symmetric, also
applying the inverse Laplace operator on vorticity fields angular momentum. In Part I it is shown that, without
are elements of the space UN. By this we mean that these forcing and friction, the absolute enstrophy and the circula-
fields, collectively denoted by x and distinguished from the tion are still conserved in the semidiscrete system, i.e.,
original untruncated fields by a tilde, are written as (with in the system with spatial discretization but without the
the same step convention with regard to the summation Runge–Kutta time discretization. Also the angular mo-
over n as in (6)) mentum remains conserved, under the condition that the

planetary vorticity is circularly symmetric. The energy is
not conserved. However, in the first two examples of thex̃ 5 ON

m52N
ON12

n5umu
xmnYmn. (7)

next section we will see that if the spatial resolution in-
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creases the degree of conservation of energy increases as moves with a velocity given by gb(1 2 sin u). Batchelor
[2] has shown that—in the limit of vanishing viscosity—thewell and at a rapid pace.

If a viscosity term is added to our system, so that the vorticity in the interior gets homogenized at a value that
is determined by the velocity of the boundary. Wood [16]right-hand side of (1) is n=2z, an extra boundary condition

of no-slip needs to be imposed. If the boundary moves has given a general expression for this value of the vorticity
in case the streamfunction consists of a single cell, whichwith a prescribed velocity ub(u), this additional boundary

condition can be written as is the case in the two examples. Applied to the first example
the expected value of the vorticity is 2(1 2 s)1/2gb . Applied
to the second example the expected value is 2(3/2)1/2gb .F­c̃(r, u)

­r G
r51

5 ub(u). (14) These predictions are checked against long time integra-
tions using low values of the viscosity. Section 3 closes the
paper with a summary.As the streamfunction is completely determined from the

vorticity by (16b) or (17b) of Part I, any additional bound-
2. EXAMPLES OF TIME INTEGRATIONSary condition must be incorporated in terms of a constraint

on the vorticity. If the boundary velocity is written as a
In this section we discuss six examples of time integra-finite sum of complex exponentials

tions with the model developed in Part I and summarized in
the previous section. The model is written in FORTRAN,
using double precision (16 bits), and implemented on aub(u) 5 ON

m52N
ubmeimu, (15)

Silicon Graphics Indy Workstation. The architecture of
the code is copied from a spectral code for two-dimensional

it is shown in Part I that the boundary condition (14) incompressible flow on a (hemi)sphere, a code that the
reduces to author has developed previously following the review of

Machenhauer [7].
zmumu 5 2(umu 1 1)ubm . (16) The examples to be discussed in the following differ,

among other aspects, in the spatial structure of the plane-
So, the no-slip boundary condition fixes the coefficients tary vorticity f. The expression for the planetary vorticity,
zmumu in terms of the Fourier coefficients ubm of the velocity or Coriolis parameter, reads for a rotating spherical earth
of the boundary. How this condition on the coefficients
zmumu can be maintained during a time integration is ex- f 5 2V sin f, (17)
plained in Subsection 2.4 of Part I.

The next section contains six examples of time integra-
where V is the angular velocity of the earth’s rotationtions. In the first and second example the planetary vortic-
and f is latitude in the geographical spherical coordinateity is circularly symmetric; i.e., f 5 2cr2, where r is the
system. (The coordinates in this system are the longituderadial coordinate. Results are shown of time integrations,
l and the latitude f, the latter not to be confused with thewithout forcing and friction, using two different spatial
spatial structure of the vorticity forcing in (1).) Introducingresolutions and starting from a dipole that rotates with a
a rotated spherical coordinate system of which the equatorknown angular velocity. This time-dependent solution can
passes through a given point (0, f0) and of which the fbe projected analytically on the basis functions of the spec-
meridian coincides with the 0 meridian of the original sys-tral model, as demonstrated in the Appendix. In the third
tem, the expression for the planetary vorticity readsand fourth examples the planetary vorticity varies linearly

with the north–south coordinate y; i.e., f 5 by. This is the
f 5 2V(cos f0 sin f9 2 sin f0 cos l9 cos f9), (18)system studied by Verkley and Zimmerman [15], referred

to as VZ. In one case we start with the state of rest and
let the system evolve with values of t and k for which the where (l9, f9) are the coordinates in the rotated coordinate
steady state solution is known from VZ. In another case system. If we introduce the local Cartesian coordinates
we repeat the experiment with values of t and k for which
the result is not known. In the fifth and sixth examples the x 5 (a/R)(l9 2 f), (19a)
planetary vorticity is taken to be zero; i.e., f 5 0. The

y 5 (a/R)f9, (19b)forcing and Ekman friction are also zero but instead the
system has a viscosity term and is driven by a moving
boundary. We first study the case of a boundary that rotates where a is the radius of the earth and R is the radius

of the circular basin centered at (0, f0), we obtain, afterwith angular velocity gb, a fraction s of which is stationary
due to a fixed sleeve. We then consider a boundary that expanding expression (18) to second order in R/a,
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f P f0 1 by 2 cr2, (20) function (23). The parameter B is an arbitrary amplitude
and the parameter e is an arbitrary phase.

Expression (24) is indeed an exact time-dependent solu-where we have defined
tion of (1) and rotates with angular velocity g given by
(25). This follows from the fact that for an absolute vorticityf0 ; 2V sin f0, (21a)
field of the form (24) we have

b ; 2V(R/a) cos f0, (21b)

c ; V(R/a)2 sin f0, (21c) ­q
­t

5 2g
­q
­u

5 J S2
1
2

gr2, qD , (26)

and where r2 5 x2 1 y2. For more details—especially
so thatconcerning the expansion of some differential operators—

we refer to Verkley [14]. We see that, if only the zero-
order contribution is retained, the planetary vorticity has ­q

­t
1 J(c, q) 5 J Sc 2

1
2

gr2, qD . (27)
the constant value f0 which is called an f-plane. Here we
note that, because a constant contribution to the potential

The last Jacobian is zero because, as can be verified fromvorticity in (1) is dynamically insignificant, the value of f0 (23), (24), and (25), there is a linear functional relationshipcan be taken as zero. Retaining also the first-order contri-
between c 2 1/2gr2 and q,bution to f we obtain what is commonly called a b-plane.

This approximation of the planetary vorticity was first used q 5 A(4 2 a2) 2 a2 (c 2 Asgr2). (28)
by Rossby [13] in his study of planetary waves in the atmo-
sphere. Including also the second-order contribution to f We choose l 5 1 and the smallest value of a for which
and placing the center of the basin on the north pole so J1(a) 5 0, which is a 5 3.8316.... This gives a dipole struc-
that the b-term is zero leads to what has been called a c- ture for the streamfunction and the absolute vorticity. The
plane by Nof [8]. value of a was obtained by searching for the first nontrivial

zero of J1(a), using an interval halving method.1 Bessel
2.1. The c-Plane functions, here and in the following are calculated using the

numerical routines of Press et al. [11]. For the parameter AThe planetary vorticity in this subsection is assumed to
we choose the value that gives a negative angular velocityvary quadratically with r, i.e., f(r, u) 5 2cr2, called a c-
g with a corresponding period of 50 nondimensional timeplane. By measuring time in units of (cR2)21 the value 1 can
units, i.e., g 5 20.1256.... It follows from (25) that thebe substituted for c, so that the planetary vorticity becomes
value of A is 0.005279.... For the parameter B we take the
value 0.1 and for e the value f/2.f(r, u) 5 2r2. (22)

We initialized the model with the q-field (24) at time
t 5 0. As the model is formulated in terms of coefficientsWe will show that if t and k are both equal to zero, the
with respect to the basis functions Ymn, we need to projectfollowing streamfunction and absolute vorticity are an ex-
this initial q-field on the functions Ymn. This projection canact time-dependent solution of (1),
be done exactly. Indeed, from Table I of Part I it follows
that the u-independent terms can be expressed simply in

c(r, u, t) 5 A(r2 2 1) 1 BJl (ar) cos l(u 2 gt 2 e), (23) terms of Y0,0(r, u) 5 1 and Y0,2(r, u) 5 2r2 2 1. In the
Appendix it is proved furthermore that we haveq(r, u, t) 5 4A 2 r2 2 a2BJl (ar) cos l(u 2 gt 2 e), (24)

Jl (ar) cos l(u 2 gt 2 e) (29)with

5 Oy
n5l

(cln Yln(r, u) 1 c*lnY2ln(r, u)),
g 5 2 SA 2

1
a2D . (25)

with

Here Jl (ar) is a Bessel function with integer order l and
cln 5

1
a

e2il(gt1e)(21)k(n 1 1)Jn11(a), (30)radial wave number a. The value of the latter is chosen
such that Jl (a) 5 0 as a result of which c is zero at the
boundary. The product of Jl (ar) and a trigonometric func-

1 We did our own numerical calculation to make sure that it is an
tion with angular wavenumber l is an eigenfunction of the accurate zero of our approximated Bessel function. In fact, it differs
Laplace operator with eigenvalue 2a2; as a result (24) is somewhat from the value given by Abramowitz and Stegun [1], which

is 3.8317....indeed the absolute vorticity associated with the stream-
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where the reader is reminded of the fact that n 5 l 1 2k,
with k 5 0, 1, 2, ..., etc. As announced at the beginning of
this section, we will use two different truncations for the
absolute vorticity q. These truncations are T5 and T10;
these are the maximally allowed truncations for 16 and 32
equidistant u-values and 8 and 16 Gaussian values of r in
the numerical evaluation of the Jacobian, as explained in
Subsection 2.2 of Part I. In both cases the time stepping
is done with the Runge–Kutta scheme, described in Sub-
section 2.3 of Part I, with a time step of 0.01 time unit.

The truncated fields c̃ and q̂ at time t 5 0 and with
truncation T5 are shown in Figs. 1a and 1b; the same fields
at truncation T10 are shown in Figs. 2a and 2b. (The fields
in T10 truncation are visually indistinguishable from the
exact fields.) For each of the two truncations we performed
a time integration for a period of 500 time units. After this
period the dipolar structure should have rotated 10 times
and be returned to its original position. In Figs. 1c and 1d
we show c̃ and q̂ after the integration period for the T5
integration; in Figs. 2c and 2d the corresponding fields for
the T10 integration are shown. The figures show that after
the T5 integration the dipole has rotated somewhat too
fast but has preserved its spatial structure very accurately.
In the T10 truncation the orientation of the dipole after
500 time units is visually indistinguishable from its original
orientation. To be more specific, the difference between
the fields before and after the integration are shown in
Figs. 1e and 1f (T5 integration) and in Figs. 2e and 2f (T10
integration). Maxima and minima are denoted by H and
L, respectively, and are given in the legends to the figures.
In the T5 integration the difference field has a weak dipolar
structure in both the streamfunction (Fig. 1e) and the vor-

FIG. 1. The truncated streamfunction c̃ (a) and absolute vorticity q̂ticity (Fig. 1f). The difference between the maximum and
(b) of the exact solution (23) and (24) at t 5 0, as represented in UNminimum value is about 10% of the difference between
and TN, respectively, with N 5 5. The parameters of this solution, i.e.,the maximum and minimum value of the original fields. A, B, l, a, g, and e, are given in the text. The projection on the basis

In the T10 integration the difference fields (Figs. 2e and functions Ymn of the model is carried out using (29) and (30). In (c) and
2f) also have a dipolar structure but with somewhat more (d) the streamfunction c̃ and absolute vorticity q̂, respectively, are shown

at t 5 500. The difference between the initial streamfunction and thenoise superimposed. Here the difference between the max-
final streamfunction is shown in (e), and the difference between the initialimum and minimum value of the streamfunction difference
absolute vorticity and the final absolute vorticity is shown in (f). Thefield is about 0.04% of the difference between the maxi- isoline distance of the difference plots is one-eighth of the difference

mum and minimum value of the original streamfunction; between the maximum and minimum value, where the (local) minima
for the absolute vorticity difference field this is about are marked by L and the (local) maxima by H. In (e) the minimum value

is 24.84 3 1023; the maximum value is 5.03 3 1023. In (f) the minimum0.08%. In Fig. 3 we give the spectral distribution of the
value is 28.25 3 1022, located at the southern boundary of the basin,enstrophy (10) of the difference fields. The upper panels
whereas the maximum value is 9.08 3 1022, located at the northern(Figs. 3a and 3b) refer to the T5 truncation, and the lower boundary of the basin.

panels (Figs. 3c and 3d) refer to the T10 truncation. In the
left panels we show the natural logarithm of Qumu

N as a
function of umu, where Qumu

N is the contribution to QN of all
basis functions with index 1m and 2m. In the right panels maximum and minimum values is about 0.005 and 0.05%,

respectively, of the difference between the maximum andwe show the natural logarithm of Qn
N where Qn

N is the
contribution to QN of all basis functions with index n. We minimum values of the original streamfunction and abso-

lute vorticity fields.notice that in all four cases the spectrum is relatively flat.
This is also the case for the difference fields in a T21 In Fig. 4 we show the fraction EN (t)/EN(0), where EN(t)

is the energy at time t and EN(0) is the energy at theintegration, not shown, where the difference between the
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FIG. 3. The spectral distribution of the enstrophy QN of the difference
between the initial and final state of the time integrations, as displayed
in Figs. 1e and 1f and 2e and 2f. In (a) and (b) the natural logarithms
of Q umu

N and Qn
N are shown as a function of umu and n, respectively, of the

difference between the initial and final state for the T5 integration. In
(c) and (d) the natural logarithms of Q umu

N and Qn
N are shown as a function

of umu and n, respectively, for the T10 integration. Here Q umu
N is defined

as the enstrophy contained in the basis functions with index 2m and
1m, and Qn

N is defined as the enstrophy contained in the basis functions
with index n.

improves quickly with increasing resolution, at least in the
case of a rotating dipole. We do not show graphs of theFIG. 2. The truncated streamfunction c̃ (a) and absolute vorticity q̂
fractional changes in the other conserved quantities. In the(b) of the exact solution (23) and (24) at t 5 0, as represented in UN

and TN, respectively, with N 5 10. In (c) and (d) the streamfunction c̃ T5 run the variances of the fractions QN (t)/QN (0), CN(t)/
and absolute vorticity q̂, respectively, are shown at t 5 500. The difference
between the initial streamfunction and the final streamfunction is shown
in (e), and the difference between the initial absolute vorticity and the
final absolute vorticity is shown in (f). As in Fig. 1, the isoline distance
of the difference plots is one-eighth of the difference between the maxi-
mum and minimum value, where the (local) minima are marked by L
and the (local) maxima by H. In (e) the minimum value is 22.01 3 1025;
the maximum value is 1.91 3 1025. In (f) the minimum value is 23.67 3

1024, whereas the maximum value is 9.68 3 1024, located at the northern
boundary of the basin.

start of the integration. Figure 4a is the result of the T5
integration, and Fig. 4b is the result of the T10 integration.
For the case shown in Fig. 4a the variance of the fraction
EN (t)/EN(0), calculated for 100 points in the time series—5
time units apart—is 1.0 3 1024. For the case shown in Fig.
4b this variance is 2.0 3 1028. Calculating the same variance

FIG. 4. The value of EN(t)/EN(0), where EN(t) is the energy of the
for a T21 integration, not shown, leads to a value of 1.2 3 truncated system at time t and EN(0) is the energy of the truncated system
10214. This, together with the evidence presented in Figs. at time 0. The graph in (a) refers to the T5 integration, and the graph

in (b) to the T10 integration.4a and 4b, demonstrates clearly that energy conservation
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the figure correspond to the truncations N 5 5, 10, 21, 42,
and 85. The solid line in the figure represents Orszag’s
estimate multiplied by 3.7150 3 1026 s. The latter time is
chosen in order to let the estimate be consistent with the
required CPU time per Jacobian for N 5 85. We conclude
that Orszag’s estimate provides a reasonable fit to the data
and can therefore be used to estimate the CPU time for
integrations at higher truncations.

In the integrations shown we used a time step of 0.01
nondimensional time unit. We will see that this is a rather
conservative choice. By performing time integrations with
increasing values of the time step we can find the maximum
value of the time step that does not make the scheme
unstable. Instability of our fourth-order Runge–Kutta
time-stepping scheme is established by performing 100
time steps, starting with the field (24), and checking
whether the enstrophy—which should stay constant—
increases by a factor of 1000 or more within the period of
100 time steps. The accuracy of the maximum value of

FIG. 5. (a) The natural logarithm of the amount of CPU time (in the time step thus obtained is estimated to be 2%. The
seconds) required to perform a single time step with the unforced friction- procedure is carried out for a series of increasing time
less model as a function of the natural logarithm of the truncation. The steps and for the truncations N 5 5, 10, 21, 42, and 85.five dots correspond to the truncations N 5 5, 10, 21, 42, and 85. The

The natural logarithm of the maximum time step as asolid line is proportional to Orszag’s [9] estimate for the number of real
function of the natural logarithm of the truncation limit isoperations to perform a single time step in a hemispheric spectral model

on a sphere. (b) The natural logarithm of the maximum value of the time shown in Fig. 5b, the dots representing the five different
step as a function of the natural logarithm of the truncation. The maximum truncations just mentioned. The line in Fig. 5b corresponds
value of the time step is determined experimentally using (24) as an to the function C/N p, with C 5 36.37 and p 5 1.17. This
initial state. The dots are the five truncations mentioned above. The solid

function2 gives a reasonable fit to the points and can beline is the function C/N p, with C 5 36.37 and p 5 1.17. The latter values
used to estimate the maximum value of the time step atare determined graphically and provide a reasonable fit to the data.
higher truncations.

The maximum value of the time step at truncation N 5
5 is 6.3 time units; the maximum value of the time step at
N 5 10 is 2.5. At the truncations N 5 21, 42, and 85 the

CN (0), and AN(t)/AN (0) are 8.6 3 10212, 5.2 3 10211, and maximum values of the time step are, respectively, 1.0,
1.1 3 10210, respectively. In the T10 run the variance of 0.45, and 0.20. We recall that these values apply for an
QN (t)/QN (0) is 4.3 3 10214, whereas the variances of CN (t)/ integration started with (24) with parameters as given
CN (0) and AN (t)/AN (0) are lower than the machine’s accu- above. The choice of 0.01 as the time step used in the
racy, i.e., lower than 1.0 3 10216. calculations above is indeed well below the maximum

As mentioned above, the architecture of the model is value. We have seen that in the first example, with trunca-
copied from a spectral code for incompressible two-dimen- tion T5, the dipole rotates somewhat too fast. This is not
sional fluid flow on a hemisphere. Indeed, there is an almost due to the value of the time step, as experimentation shows
perfect one-to-one correspondence between the model de- that up to a time step of 1 there is no change in the final
veloped here and the hemispheric model. The basic differ- position of the dipole after 10 revolutions. With time steps
ence concerns the functions Wmn(r) in the definition of larger than 1, the rotation speed slows down somewhat
Ymn; in our model they are given by (3), and in the spectral but in this case the amplitude of the dipole changes some-
model on a hemisphere they are the associated Legendre what as well.
functions Pmn(sin f) as defined, e.g., by Machenhauer [7].

2.2. The b-PlaneThis one-to-one correspondence implies that we can use
Orszag’s [9] estimate (5/4)N 3 1 10N2 log2 N for the number In this case the planetary vorticity varies linearly with
of real operations in the calculation of the Jacobian, as a y, i.e., f(r, u) 5 br sin u 5 by, which is called a b-plane.
function of the truncation limit N. In Fig. 5a we show the
natural logarithm of the CPU time (in seconds) needed

2 A theoretical study of the maximum value of the time step, which is
for one calculation of the Jacobian as a function of the beyond the scope of the present paper, is likely to result in p 5 1. Use
natural logarithm of the truncation limit. In the calculation of the latter value would give a somewhat larger estimate of the maximum

value of the time step.we did not use any form of optimization. The five dots in
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If time is measured in units of (bR)21, then the planetary As a result, we have
vorticity reads

J(x21, j) 5 2
­j

­u
, (39a)

f(r, u) 5 r sin u 5 y. (31)

J(x, j21) 5 0, (39b)
In VZ solutions were obtained for the steady state version
of (1) with f 5 y and f 5 1, i.e., of the equation for any field j and x. Using (39), the hierarchy of equations

can be written as
kz 1 J(c, z 1 y) 1 t 5 0. (32)

j21 5 22, (40a)
The essence of the method is a perturbation expansion in
which the parameter a, Sa21 2

­

­u
D j0 5 x, (40b)

a ; t

2k2 , (33) Sa21 2
­

­u
D j1 5 2J(x0, j0 1 y), (40c)

is kept fixed and (32) is expanded in either k21 or d21,
where the parameter d is defined by Sa21 2

­

­u
D j2 5 2J(x0, j1) 2 J(x1, j0 1 y), (40d)

?d ; t

2k
. (34)

?
?

The parameter d measures the ratio between the forcing
and friction parameters and thus determines the amplitude Sa21 2

­

­u
D jk

of the resulting flow pattern. In the parameter a this ampli-
tude is divided by the friction parameter k so that a mea- 5 2J(x0, jk21) 2 J(x1, jk22) 2 ? ? ? 2 J(xk21, j0 1 y),
sures the degree of nonlinearity. In VZ both the expansion

?in k21 and the expansion in d21 are used. Here we make
?use of the expansion in d21. It follows from (33) and (34)
?that in terms of a and d the original parameters k and t
?can be written as k 5 d/a and t 5 2d2/a. If we substitute

the expressions k 5 d/a and t 5 2d2/a in (32) and divide
The equations can be solved consecutively and, as shownthe equation by d, we obtain
in VZ, the solution jk of the kth equation in the hierarchy
can be written in terms of the functions Xmn with 2k 2a21z 1 d21J(c, z 1 y) 1 2da21 5 0. (35)
1 # m # k 1 1 and umu # n # k 1 1. This means that the
solution jk is an element of the space T(k 1 1) and theThe expansion of z and c then reads
associated streamfunction xk an element of U(k 1 1). In
VZ it is investigated numerically for which values of the

z 5 dj21 1 j0 1 d21j1 1 d22j2 1 ? ? ? , (36a)
parameters the perturbation expansion converges uni-
formly. In terms of the parameters a and d the region ofc 5 dx21 1 x0 1 d21x1 1 d22x2 1 ? ? ? . (36b)
uniform convergence is given in Fig. 6. This figure displays
the parameters ln a (on the horizontal axis) and ln d (onSubstituting these expansions into (35) and collecting like
the vertical axis). The series converges uniformly outsidepowers of d21, we obtain a hierarchy of equations. At order
the shaded region. Figure 6 is identical to Fig. 1 of VZ,21 we have
except that in Fig. 6 the vertical axis displays ln d instead
of ln k. The horizontal line corresponds to the value lna21j21 1 J(x21, j21) 1 2a21 5 0, (37)
d 5 20.75 and the three dots D, A, and E are three of the
examples discussed in VZ. For these examples the serieswhich can be solved straightforwardly:
was summed to k 5 50 and the corresponding flow patterns
are given in Fig. 4 of VZ.

j21 5 22, (38a)
For the purpose of this paper we have repeated the

perturbation expansion for point A in the diagram of Fig.x21 5 2As(r2 2 1). (38b)
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tion of the circulation CN can be calculated analytically.
Indeed, we have

dCN

dt
5 fk1, 2tf̂ 2 kẑ l 5 2ftk1, 1l 2 fkk1, ẑ l (41)

5 2ft 2 kCN ,

where we used the fact CN does not change with time in
the absence of forcing and friction, and that f̂ 5 f 5 1.
The solution of the differential equation is

CN(t) 5 CN(0)e2kt 1 f
t

k
(e2kt 2 1), (42)

where CN(0) is the value of CN at time t 5 0. It follows
from the solution (42) that the value of CN at t 5 y is
given by

FIG. 6. Convergence diagram of the series expansion method of VZ
with ln a on the horizontal axis and ln d on the vertical axis. The parameter CN(y) 5 2f

t

k
, (43)

a, defined in (33), is a measure of the nonlinearity of the system, whereas
the parameter d, defined in (34), is a measure of the amplitude of the
resulting flow patterns as it measures the ratio of the forcing and friction so that (42) can be written asparameters. Outside the shaded region the series expansion converges
uniformly. The points D, A, and E are discussed in VZ. The points A
and F correspond to the two time integrations of Subsection 2.2. CN(t) 5 CN(0)e2kt 1 CN(y)(1 2 e2kt) (44)

and thus

6; this point corresponds to ln a 5 0.00 and ln d 5 20.75
or, equivalently, to ln k 5 20.75 and ln t 5 20.81. We CN(t)

CN(y)
5

CN(0)
CN(y)

e2kt 1 1 2 e2kt. (45)
summed the perturbation series until and including k 5
41 so that the resulting relative vorticity is an element of

In our case the value of CN(0) is 0 so thatthe space T42. The streamfunction and absolute vorticity
of this solution are visually indistinguishable from those
of Fig. 4 (second column) of VZ and are not shown here. CN(t)

CN(y)
5 1 2 e2kt. (46)

To check that our time-dependent spectral model is able
to find the same steady state by means of a long time
integration, we initialized our model with c̃ 5 0 and inte-
grated the model with f 5 y, f 5 1, and k and t having
the values just given. The truncation used is T42, which is
the highest possible truncation if 128 equidistant u-values
and 64 Gaussian r-values are used in the numerical calcula-
tion of the Jacobian. The period of integration is 50 time
units, and the time-stepping procedure is the Runge–Kutta
scheme with a time step of 0.01 time unit. The result of
this integration is given in Fig. 7. and agrees fully with Fig.
4 (second column) of VZ. We therefore conclude that after
50 time units the system has reached a steady state and
that this steady state is in accordance with the result of

FIG. 7. The streamfunction c̃ (left) and the absolute vorticity q̂ (right)the series expansion.
at time t 5 50 in the time integration with ln a 5 0 and ln d 5 20.75.As an additional check that after 50 time units the system
These values correspond to ln k 5 20.75 and ln t 5 20.81, values for

has reached a steady state we have a look at the time which the series expansion approach of VZ converges (see their Fig. 4,
evolution of the absolute enstrophy, circulation, angular second column). The model resolution is T42, the time-stepping fourth-

order Runge–Kutta with a time step of 0.01.momentum, and energy. First we note that the time evolu-
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so that this time integration explores unknown territory.
Using the same truncation and time stepping as in the
previous example we integrate the model for 250 time
units, starting from the state of rest. The result is given in
Fig. 9. It is a steady state, judged from the fact that the
flow patterns at several time values before t 5 250 cannot
be distinguished visually from the pattern of Fig. 9. We
observe that this steady state has a much more pronounced
boundary layer structure in the north-west part of the basin
than the steady state of Fig. 7. The streamfunction has the
same general structure as Fig. 5 of Harrison and Stalos [4],
who carried out the same type of numerical simulations
for a square basin.

That Fig. 9 is a steady state is confirmed by the time
evolution of the absolute enstrophy, circulation, angular
momentum, and energy, divided by their values at t 5 250,
of which the graphs are given in Fig. 10. We see that all
four quantities are close to their saturation values at t 5
250; these values are given in the legend to Fig. 10. It is
observed that also here the circulation CN(t) neatly follows
the expected curve. The exponential term in (46) at t 5
250 is now 1.2 3 1027, which is again considered sufficiently
small to identify the values at t 5 250 with the satura-
tion values.

2.3. The f-Plane

In this subsection we take the planetary vorticity to be
FIG. 8. The fractions QN(t)/QN(50) (a), CN(t)/CN(50) (b), AN(t)/

constant, i.e., f(r, u) 5 f0, which is called an f-plane. If timeAN(50) (c), and EN(t)/EN(50) (d) as a function of time. The plots are
is measured in units of f 21

0 , we may substitute the value 1drawn on the basis of calculated values at times t 5 0.0, 0.5, 1.0, ..., 50.0,
i.e., on the basis of 100 data points. The values at the end of the integration for f0 . It should be noted, however, that in the dynamics
period are QN(50) 5 1.61 3 100, CN(50) 5 22.79 3 100, AN (50) 5 of (1) a constant value of f has no effect. This means that
27.09 3 1021, and EN (50) 5 1.68 3 1021. f is only a measure of time and can effectively taken to be

zero. Assuming that the vorticity forcing and the Ekman
friction are also zero, and that a viscosity term is present
on the right-hand side of (1), the equation to be studied isAfter 50 time units the exponential term in the equation

above is 5.5 3 10211 for the value of k that is chosen here.
Assuming that the absolute enstrophy, angular momen-
tum, and energy behave not too differently, it therefore
makes sense to substitute the value 50 for y and look at
the fractions QN(t)/QN(50), CN(t)/CN(50), AN(t)/AN(50),
and EN(t)/EN(50) of the time integration. The graphs are
displayed in Fig. 8. We see that the circulation (Fig. 8b)
neatly follows the expected behavior. The other quantities
indeed reach their saturation values in about the same
way, where we note that the absolute enstrophy (Fig. 8a)
starts from a nonzero value due to the contribution of the
planetary vorticity f. The values of QN, CN, AN, and EN at
time t 5 50 are given in the legend to Fig. 8.

FIG. 9. The streamfunction c̃ (left) and the absolute vorticity q̂ (right)We conclude this subsection by showing the results of
at time t 5 250 in the time integration with ln a 5 0 and ln d 5 22.75.a time integration for the parameters ln a 5 0 and ln d 5
These values correspond to ln k 5 22.75 and ln t 5 24.81, values for

22.75 or, equivalently, ln k 5 22.75 and ln t 5 24.81, which the series expansion approach of VZ does not converge. The model
denoted by point F in Fig. 6. The values of these parameters resolution is T42, the time-stepping fourth–order Runge–Kutta with a

time step of 0.01.lie outside the region in which the method of VZ converges,
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From the steady state equation (48) it follows that for
any region R (not to be confused with the radius of the
circular domain) within the flow domain we have

E
R

dSv ? =z 5 n E
R

dS=2z ⇒
(49)R

B
dln ? vz 5 n R

B
dln ? =z,

where dS is an area element of the flow domain, n is an
outward pointing unit vector locally perpendicular to the
boundary B of R, and dl is a line element along B. We
used that v ? =z 5 = ? (vz), as v is divergence free, and
applied the divergence theorem. If we now take as a region
R a region that is bounded by a closed streamline c 5 c,
the integral on the left-hand side is zero because n is then
perpendicular to v. We thus obtain

R
c5c

dln ? =z 5 0. (50)

This relationship holds for every flow that is steady in the
presence of viscosity. It expresses the fact that in the steady
state there can be no diffusive flux of vorticity over regions
enclosed by streamlines. In those parts of the flow domain
in which the viscosity term in (48) is vanishingly small we
have, in addition to (50),

FIG. 10. The fractions QN(t)/QN(250) (a), CN(t)/CN(250) (b), AN(t)/
v ? =z 5 0 ⇒ (51)AN(250) (c), and EN(t)/EN(250) (d) as a function of time. The plots are

based on the calculated values at times t 5 0.0, 2.5, 5.0, ..., 250.0, i.e., on
z 5 z(c);100 data points. The values at the end of the integration period are

QN(250) 5 3.43 3 1021, CN(250) 5 24.02 3 101, AN (250) 5 24.16 3

1022, and EN (250) 5 1.33 3 1023. i.e., the vorticity z should be constant on isolines of the
streamfunction c. Combining (50) with (51), we obtain for
those parts of the flow domain in which the viscosity term
is vanishingly small

­z

­t
1 J(c, z) 5 n=2z. (47)

dz

dc
R

c5c
dln ? =c 5 0 ⇒

In this section we will consider steady solutions of this dz

dc
R

c5c
dl uvu 5 0 ⇒ (52)equation. With the Jacobian written as v ? =z, it reads

dz

dc
5 0.v ? =z 5 n=2z. (48)

We will test our numerical model by performing two long As this is true for every closed streamline, the vorticity z
should have a constant value z0. This is Batchelor’s [2]time integrations and analyze the final states that are ob-

tained. We incorporate viscosity and the corresponding theorem on vorticity homogenization, a theorem that was
later elaborated upon by Rhines and Young [12] in theno-slip boundary condition in the manner described in

Subsection 2.4 of Part I. As a reference we consider the context of planetary gyres.
Although Batchelor’s theorem states that the vorticitycase in which the viscosity is vanishingly small, a case that

has been studied theoretically by Batchelor [2]. First, we gets homogenized within closed streamlines the theorem
does not say at which value. In order to remove this indeter-will give a short outline of his theoretical results, and next

we will describe the results of the time integrations. minacy, the effects of viscosity need to be considered in
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more detail. Now, it is well established since the work of
Prandtl that viscosity mainly acts in layers adjacent to the
flow boundaries. In these boundary layers the viscosity
term is not small, not even in the limit of vanishing viscosity
as these layers may become vanishingly narrow with corre-
spondingly high values of the velocity gradients. As an
example of how an analysis of boundary layers resolves
the indeterminacy, Batchelor [2] considered a circular flow
domain of which the boundary rotates with constant angu-
lar velocity gb with a fraction s that remains stationary
due to a fixed sleeve. If this fraction is zero, then it is
intuitively clear that the value of z0 should be 2gb , i.e., the
value that corresponds to a solid-body rotation with the
same angular velocity as the moving boundary. If this frac-

FIG. 11. (a) The velocity field ub(u), given by (54), as representedtion is nonzero, then the solution of the boundary layer by (15) with N 5 42. The velocity field (54) is a smoothed version of the
problem (which need not be solved in all detail) leads to field used by Batchelor [2] in his study on vorticity homogenization. It
the result that z0 5 2(1 2 s)1/2gb . Wood [16] has shown represents a boundary that rotates with a uniform angular velocity gb 5

0.5 of which a fraction s 5 1/4, centered around u 5 f/2 (908), is stationary.that for all cases in which the streamfunction consists of
(b) One of the boundary velocity fields used by Kuwahara and Imai [6],a single cell with closed streamlines the value of the homog-
namely ub(u) 5 gb(1 2 sin u), with gb 5 0.5.enized vorticity is given by

(z0/2)2 5
1

2f
E2f

0
du[ub(u)]2. (53)

for u , ul or u . uu, and ub(u) 5 0 for ul # u # uu, where
uu 2 ul 5 2fs. The Fourier coefficients ubm of this field
can be calculated exactly. However, the truncated fieldThis expression is Eq. (46) from Kuwahara and Imai [6]

and includes Batchelor’s result as a special case. Kuwahara (15) then shows spurious oscillations in the vicinity of ul

and uu as a result of the Gibbs phenomenon. To smooth outand Imai [6] describe, among other results, the result of a
numerical procedure for obtaining steady states of the these oscillations we approximated the boundary velocity

field bysame system as considered here. Their procedure makes
use of a relaxation method and finite differences with a grid
of equidistant values of r and u. In one case the resolution of ub(u) 5 gb([1 1 ea(u2ul)]21 1 [1 1 ea(uu2u)]21), (54)
their model was 40 3 40 and the boundary velocity gb(1 2
sin u) with gb 5 0.5. Wood’s formula gives a value of and calculated the Fourier coefficients numerically by di-

viding the interval [0, 2f] in 1000 equal parts and approxi-2(3/2)1/2gb for the value of the homogenized vorticity. With
a viscosity of 1/1024 Kuwahara and Imai [6] indeed ob- mating the Fourier integral by a summation. In the time

integration we took gb 5 0.5, a 5 10, ul 5 f/4 (458),tained an almost homogenous field of vorticity, as can be
judged from their Fig. 3b. and uu 5 3f/4 (1358) so that s equals 1/4. The resulting

truncated field ub(u) is in close agreement with (54). AIn the following we will describe two time integrations
with the model, with a T42 spatial truncation (close to the graph of it can be seen in Fig. 11a.

In Figs. 12a and 12b we show the initial streamfunctionresolution used by Kuwahara and Imai [6]) and a fourth-
order Runge–Kutta time-stepping procedure with a time and vorticity field. The streamfunction describes a large

cyclonic (counterclockwise) gyre that fills the whole flowstep of 0.01 time unit. In the first time integration we take
for the viscosity n the nondimensional value of 1/1000. domain. At the northern part of the boundary, at the posi-

tion of the fixed sleeve, the streamlines are wider apart.This value is large enough to let the model resolve any
boundary layers, which are expected to be of the order of The velocities there are weaker than elsewhere and this,

of course, agrees with the boundary velocity displayed inn 1/2 (see Batchelor [3, Eqs. (5.7.3) and (5.7.4)], his U0 and
L being of order 1 in our case). As the initial state we Fig. 11a. The vorticity field has its largest gradients at

the endpoints of the sleeve, while the gradients in thechoose ẑ 5 ẑb , where ẑb is the field of which all coefficients
are zero except for zmumu which are given by (16). As ex- neighborhood of the southern boundary are more or less

constant. Note, incidentally, that the initial vorticity fieldplained in the previous section, this initial state satisfies
the boundary condition that the tangential velocity at r 5 has a zero Laplacian, so that it is a solution of (48) in the

limit of infinitely high viscosity.1 equals a given field ub(u) of which the complex Fourier
coefficients are ubm. In the case discussed by Batchelor [2] For a viscosity as small as 1/1000 the initial state is not

stationary and, as soon as the integration starts, vorticitythe velocity field at the boundary is given by ub(u) 5 gb
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oscillations, whereas AN(t)/AN(500) and EN(t)/EN(500)
asymptote to their saturation values roughly like the corre-
sponding graphs in Fig. 8. We note that the fraction CN(t)/
CN(500) is and remains 1. This can be understood from
the fact that we have from (11)

CN(t) 5 f k1, ẑ l 5 fz00 (55)

and that z00 is fixed by the boundary condition (16).
A graph of the vorticity along the line x 5 0 as a function

of y is given in Fig. 13a. Here the long-dashed curve corres-
ponds to t 5 0, the solid curve corresponds to t 5 500, and
the short-dashed horizontal curve denotes the theoretical
value (3/4)1/2 5 0.8660.... Figure 13a quite clearly shows
that homogenization of vorticity has taken place and that
the gradients have concentrated in relatively narrow
boundary layers. At the center of the basin the value of z
is 0.8607 with an estimated uncertainty of 0.0001. This is
very close to the theoretical value. In order to give a more
detailed view of the flow close to r 5 1 we show in Figs.
13b and 13c plots of the streamfunction field (thin lines)

FIG. 12. The streamfunction and the vorticity at time t 5 0 (a and and the vorticity field (thick lines) in a rectangular projec-
b, respectively) and at time t 5 500 (c and d, respectively) in a time tion in which the horizontal coordinate is u (in degrees,
integration with the model in T42 truncation and a fourth-order Runge– from 0 to 360) and the vertical coordinate is r (from 1.0
Kutta time-stepping scheme with a time step of 0.01 time unit. The

to 0.7). Figure 13b corresponds to the flow at t 5 0, andplanetary vorticity, vorticity forcing, and Ekman friction are zero, but
Fig. 13c corresponds to the flow at t 5 500. Figure 13cthe system is viscous (with 1/1000 taken for the nondimensional viscosity)

and is driven by a boundary that moves with the velocity field ub displayed shows that the boundary layer at t 5 500 is well behaved,
in Fig. 11a. Because of the viscosity, the no-slip boundary condition ­c/ even close to the points where the boundary velocity
­r 5 ub is implemented. The initial state is given by (16) with the other changes rapidly.
coefficients equal to zero; this field satisfies the no-slip boundary condition

In the second time integration we used one of the bound-and has a zero Laplacian, so that it is in fact a stationary state of the
ary velocity profiles discussed by Kuwahara and Imai [6],system if the viscosity is infinitely high. The final state shows a considerable

amount of homogenization of its vorticity. namely ub(u) 5 gb(1 2 sin u) with gb 5 0.5. The Fourier
coefficients of this field (which is shown in Fig. 11b to
compare it with the previous boundary velocity field) are
obtained in a straightforward way. The integration isfrom the left endpoint of the sleeve starts moving along

the southern boundary in the direction of the flow. In the started with ẑ 5 ẑb , where ẑb is the field of which all
coefficients are zero except for zmumu which are given by (16).meantime the vorticity at the left endpoint of the sleeve

is reduced, but starts growing again after the vorticity at Again, this initial state satisfies the boundary condition that
the tangential velocity at r 5 1 equals the given field ub(u)the southern boundary is partly dissipated. Then the whole

process starts again at a lower intensity. This damped peri- of which the complex Fourier coefficients are ubm . The
vorticity field of this initial state field increases linearlyodic behavior has settled down into a nearly steady state

after 500 time units. The streamfunction and vorticity at with y. In Figs. 14a and 14b we show the initial streamfunc-
tion and vorticity field. The streamfunction again describesthis time are shown in Figs. 12c and 12d. The streamfunc-

tion has become more circularly symmetric and its ampli- a large cyclonic (counterclockwise) gyre that fills the whole
flow domain. Using the value 1/1024 for the viscosity ntude has increased. The vorticity field has changed mark-

edly. The gradients of the vorticity have concentrated in (the value used by Kuwahara and Imai [6]) we let the
system evolve in time—using the model described aboverelatively narrow layers at the boundary. Away from these

boundary layers the gradients of the vorticity have been with T42 spatial resolution and a Runge–Kutta time-inte-
gration procedure with a time step of 0.01 time unit—forreduced substantially.

We do not show the fractions QN(t)/QN(500), CN(t)/ a total period of 500 time units. The streamfunction and
vorticity fields after the integration are shown in Figs. 14cCN(500), AN(t)/AN(500), and EN(t)/EN(500) but instead

remark that all four graphs saturate visually after about and 14d, respectively. A cross section along the line x 5
0 of the vorticity field at the beginning and the end of the100 time units to a steady value. Within the first 100 time

units the fraction QN(t)/QN(500) undergoes six damped integration along with the constant theoretical value of
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3. SUMMARY

To study the performance of the spectral model that is
developed in the accompanying paper, Part I, we discuss
six examples of time integrations. The first two examples
are for a c-plane in which the planetary vorticity f varies
quadratically with the radial coordinate r. Here the forcing
and friction are set to zero and the system is initialized
with a dipolar streamfunction and absolute vorticity of
which the time evolution is known exactly. This exact solu-
tion, essentially the product of a cosine of u and a Bessel
function of r, can be projected analytically on the basis
functions Ymn. The two examples refer to two different
truncations, namely T5 and T10, and are intended to show
that the conservation of energy increases rapidly with in-
creasing resolution. Both examples reproduce the uniform
rotation of the dipole, although in the T5 integration the
simulated rate of rotation was visibly too fast. In connec-
tion with these two examples we also studied the amount
of time required for each time step as well as the maximum
value of the time step as a function of the spatial resolution
of the model.

The next two examples are for a b-plane where the

FIG. 13. Cross sections of the vorticity along the line x 5 0 and isoline
plots of the streamfunction and vorticity at time t 5 0 and time t 5 500,
for the boundary velocity field displayed in Fig. 11a. Panel (a) shows the
vorticity along the line x 5 0 as a function of y; the long-dashed curve
corresponds to the initial state, the solid curve to the final state, and the
short-dashed curve to the theoretical profile. The figure demonstrates
quite clearly that after 500 time units the vorticity in a large part of the
interior has become more uniform and that gradients of the vorticity
have become concentrated in relatively narrow boundary layers. Panels
(b) and (c) show the streamfunction (thin lines) and the vorticity (thick
lines) in a projection with u on the horizontal axis and r on the vertical
axis at the initial and final time, respectively. The isolines of the stream-
function are plotted for the values 0.00 (lowest isoline, coinciding with
r 5 1), 0.02, 0.04, etc. The isolines of the vorticity are labeled explicitly,
the contour interval being 0.5 in (b) and 2 in (c).

(3/2)1/2 5 1.2247... is shown in Fig. 15a. The latter figure
is to be compared with Fig. 3b of Kuwahara and Imai [6],
which is visually indistinguishable from our Fig. 15a. The FIG. 14. The streamfunction and the vorticity at time t 5 0 (a and
value of the vorticity at the center is 1.2669 with an esti- b, respectively) and at time t 5 500 (c and d, respectively) in a time

integration with the model in T42 truncation and a fourth-order Runge–mated uncertainty of 0.0001. Again, this is close to the
Kutta time-stepping scheme with a time step of 0.01 time unit. As in Fig.theoretical value for vanishing viscosity. A more detailed
12, the planetary vorticity, vorticity forcing, and Ekman friction are zero,picture of the flow close to r 5 1 is shown in Figs. 15b
but the system is viscous (with 1/1024 taken for the nondimensional

and 15c. As in Fig. 13, these figures show plots of the viscosity) and is driven by a boundary that moves with the velocity field
streamfunction and vorticity field close to r 5 1 at the ub displayed in Fig. 11b. The initial state is given by (16) with the other

coefficients equal to zero.initial and final time of the integration.
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The steady state thus obtained has a much more pro-
nounced boundary layer in the north-west of the basin
which compares well with the general structure of the solu-
tions obtained numerically by Harrison and Stalos [4] for
a square basin.

The last two examples concern an f-plane. In these cases
the planetary vorticity is constant. In fact, as a constant
value of f does not play a role in the dynamics of (1), it is
taken to be zero. The vorticity forcing and Ekman friction
are also put to zero, but instead there is a viscosity term
n=2z on the right-hand side of (1) and the boundary moves
with a prescribed velocity field ub . Because of the presence
of viscosity the no-slip boundary condition is implemented
in the way described in Subsection 2.4 of Part I. The first
system that we actually consider has a boundary that ro-
tates with an angular velocity gb except for a fraction s
that remains stationary due to a fixed sleeve. In the second
system that we study the boundary moves with the velocity
gb(1 2 sin u). Batchelor [2] has shown that, in the limit
of vanishing viscosity, the vorticity gets homogenized over
regions bounded by closed streamlines. To obtain the ac-
tual value of the homogenous vorticity one must consider
the flow in boundary layers and for these particular exam-
ples these values are 2(1 2 s)1/2gb and 2(3/2)1/2gb , respec-
tively, as can be deduced from a general expression ob-
tained by Wood [16]. We discuss the result of two time
integrations of 500 time units for the case in which n is
1/1000 and 1/1024, with the model in T42 truncation
and—in the first case—a smoothed approximation of the
boundary velocity field. We start from vorticity fields that

FIG. 15. Cross sections of the vorticity along the line x 5 0 and isoline satisfy the boundary condition by giving the coefficients
plots of the streamfunction and vorticity at time t 5 0 and time t 5 500,

zmumu the values of (16) and making the other coefficientsfor the boundary velocity field displayed in Fig. 11b. Panel (a) shows the
zero. The integrations indeed result in vorticity fields thatvorticity along the line x 5 0 as a function of y; the long-dashed curve

corresponds to the initial state, the solid curve to the final state, and the are much more homogeneous than the initial states, with
short-dashed curve to the theoretical profile. Panels (b) and (c) show the vorticity gradients concentrated in relatively narrow layers
streamfunction (thin lines) and the vorticity (thick lines) in a projection at the boundary. The last of the two examples comes very
with u on the horizontal axis and r on the vertical axis at the initial and

close to one of the cases studied by Kuwahara and Imai [6],final time, respectively. The isolines of the streamfunction are plotted
who used a finite-difference discretization and a relaxationfor the values 0.00 (lowest isoline, coinciding with r 5 1), 0.02, 0.04, etc.

The isolines of the vorticity are labeled explicitly, the contour interval method to obtain steady states of the same system as ours.
being 0.5 in (b) and 2 in (c). The cross section of the vorticity along the y-axis, displayed

in Fig. 15a, is visually indistinguishable from the cross sec-
tion in Fig. 3b of Kuwahara and Imai [6].

planetary vorticity varies linearly with the north–south
coordinate y. The forcing and friction in these examples are APPENDIX
of the same form as those used by VZ [15], who developed a

Spectral Coefficients of a Rotating Multipoleperturbation series technique to find steady state solutions
of (1). In the first of these examples we performed a time In this Appendix we will calculate the expansion coeffi-
integration for values of the forcing and friction parameters cients of the factor Jl (ar) cos l (u 2 gt 2 e) in the stream-
for which the steady state solution is known from VZ. The function and absolute vorticity of the rotating multipole
model, in T42 truncation, is integrated long enough to discussed in Subsection 2.1. First, we write
reach a nearly steady state and it is confirmed that this
steady state agrees with the one found by VZ. In the second

Jl (ar) cos l(u 2 gt 2 e) (A1)
of these examples we repeated the integration for parame-
ter values for which the method of VZ does not converge. 5 Ase2il(gt1e)Jl (ar)eilu 1 Aseil(gt1e)Jl (ar)e2ilu,
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from which we see that this term only projects on Yln and The latter identity leads to
Y2ln . In the following we will show that

(l 1 1 1 k 1 k9)(l 1 1 1 k)k9

5 (l 1 1 1 k) ? ? ? (l 1 1 1 k 1 k9) (A11)Jl (ar) 5 S2
aD Oyk50

(21)k(n 1 1)Jn11(a)Wln(r), (A2)

5
(l 1 1 1 k 1 k9)!

(l 1 k)!
.

where, as we recall, n 5 l 1 2k. This means that we have

Substituting this in (A8) givesJl (ar) cos l(u 2 gt 2 e)
(A3)

5 Oy
n5l

(clnYln(r, u) 1 c*lnY2ln(r, u)),
Jl (ar) 5 Sa

2Dl Oy
k950

(l 1 1 1 2k9)Wln9

with
3 FOy

k5k9

(21)k Sa
2D2k 1

(k 2 k9)!(l 1 1 1 k 1 k9)!G.

cln 5
1
a

e2il(gt1e)(21)k(n 1 1)Jn11(a). (A4)
(A12)

Our starting point in the proof of (A2) is expression Defining p 5 k 2 k9, the summation between square brack-
(9.1.10) in Abramowitz and Stegun [1]. After substituting ets becomes
z 5 ar and n 5 l, and using that G(l 1 k 1 1) 5 (l 1 k)!,
this expression reads Oy

p50
(21)p1k9 Sa

2D2p12k9 1
p!(l 1 1 1 p 1 2k9)!

(A13)

Jl(ar) 5 Sar
2 Dl Oy

k50

(21)k

k!(l 1 k)! Sar
2 D2k

. (A5)
as a result of which

Using the definition of Vln(r) in (5) this can be written as
Jl (ar) 5 S2

aD Oy
k950

(21)k9(l 1 1 1 2k9)Wln9

Jl(ar) 5 Sa
2Dl Oy

k50

(21)k

k!(l 1 k)! Sa
2D2k

Vln(r). (A6)

3FSa
2Dl1112k9 Oy

p50
(21)pSa

2D2p 1
p!(l 1 1 1 2k9 1 p)!G.

It follows from (A21) of Part I that
(A14)

Vln(r) 5 Ok
k950

(l 1 1 1 2k9)
(l 1 1 1 k 1 k9)

(k 2 k9 1 1)k9

(l 1 1 1 k)k9

Wln9 , (A7) From (A5) we deduce that the expression between square
brackets equals Jl1112k9(a), so that

so that

Jl (ar) 5 S2
aD Oy

k950
(21)k9(l 1 1 1 2k9)Jl1112k9(a)Wln9(r).

Jl(ar) 5 Sa
2Dl Oy

k950
Oy

k5k9

(21)k

k!(l 1 k)! Sa
2D2k

(A8) (A15)

3
(l 1 1 1 2k9)

(l 1 1 1 k 1 k9)
(k 2 k9 1 1)k9

(l 1 1 1 k)k9

Wln9 , Changing from primed to unprimed variables and again
using that n 5 l 1 2k, we see that this result is identical
to (A2).

where we have changed the order of summations over k
and k9. The expression can be simplified by noting that
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